创新的建筑涂料解决方案

医院治疗白癜风费用 https://jbk.39.net/yiyuanfengcai/tsyl_bjzkbdfyy/

作者:张之涵,沈剑平,中国上海的科思创聚合物(中国)有限公司

基于建筑业发展大趋势,地坪漆和墙面漆对漆膜性能、施工效率和环保性提出了更高的要求。创新的双组份水性聚氨酯和聚天门冬氨酸酯技术完全符合了市场发展的需求。本文将介绍这两种技术的基本原理以及它们在地坪和墙面方面的应用。基于这些技术开发的医院、学校、幼儿园、电子厂、食品加工厂、餐厅及车站等建筑物的内墙,还可延伸到有高耐久要求的外墙。基于这些技术开发的地坪漆广泛应用于商用及工业地坪,具有优异的耐磨性、抗划伤性和耐化学品性。本文还对一些案例进行了分析以阐明涂料在实际应用中的性能体现。

概述

乳胶漆和环氧漆是目前墙面漆和地坪漆中的主流技术。随着市场对建筑涂料性能要求的提高,聚氨酯涂料也在高性能建筑漆领域得以应用,双组份脂肪族聚氨酯涂料以其卓越的耐候性、耐化学品性、刚柔相济性、耐磨及抗划伤性能而成为高性能墙面及地坪漆的标杆技术。然而,传统的溶剂型聚氨酯涂料的性能虽优,但其较大的气味、较高的挥发性有机化合物含量,及易燃易爆的特性,限制了该技术的使用,尤其是室内应用。创新的双组份水性聚氨酯技术和聚天门冬氨酸酯技术贴合了市场的发展趋势,即:高性能、环保及高效率。

水性聚氨酯技术可应用于地坪漆和墙面漆。对于地坪漆,双组份水性聚氨酯主要作为面漆使用,用于保护诸如无溶剂环氧及聚氨酯中涂,提供更好的耐磨性、耐化学品性和耐候性,最适合的应用场合包括:办公室、大堂、展示厅、仓库、超市、学校、球场及车间等。对于墙面漆,双组份水性聚氨酯可称得上是一种具有功能性的高性能面漆,可实现易清洁、抗沾污、耐酸雨及抗涂鸦等性能,内外墙均适合使用,还能作为质感漆及素混凝土的罩面清漆。

聚天门冬氨酸酯涂料主要可用于无溶剂地坪漆,尤其适合用于有快速通行需求的场所。其涂层配套即可包含底漆,也可以直接涂敷于经过基层处理的混凝土表面,推荐的使用场所包括:停车场、运动场以及钢结构防腐。

双组份水性聚氨酯的基本原理

双组份水性聚氨酯的反应

生成聚氨酯的主要反应是异氰酸酯基团和多元醇的羟基之间的反应,如图1所示。

异氰酸酯也会与水反应,首先生成胺并释放出二氧化碳气体,随后胺再迅速与另一个异氰酸酯基团反应生成脲。图2显示了异氰酸酯与水的反应。

在双组份聚氨酯体系中,既然异氰酸酯基团会与水发生反应,我们该如何实现水性化呢?研究表明:常规的脂肪族聚异氰酸酯具有疏水性,与水的反应非常缓慢。当它与水混合时,它与水会分层,而在与水接触的界面会生成聚脲薄膜从而进一步将聚异氰酸酯与水隔离,从而实现在水中具有数小时的稳定时间,这就为实现双组份聚氨酯的水性化创造了条件。图3展示了聚异氰酸酯在水中的状态。

双组份水性聚氨酯的混合与成膜

不同于溶剂型聚氨酯涂料的均相体系,双组分水性聚氨酯混合过程中聚异氰酸酯组分与多元醇组分将形成三相体系,即水(连续相)、羟基树脂分散相(包括一部分聚异氰酸酯在剪切力作用下已经进入羟基树脂分散相)及聚异氰酸酯分散相。如前面所述,聚异氰酸酯分散相小液滴表面会有极少部分NCO会和水发生反应,生成聚脲膜,这层聚脲膜起到保护作用,因而液滴内部的NCO不会在此阶段和水发生反应,从而保证了涂料具有足够的可操作时间。

然而,双组份水性聚氨酯的混合适用期不能通过粘度的上升来判断,这有别于传统的溶剂型聚氨酯。混合后双组份水性聚氨酯的粘度通常比较稳定,即便是超过了混合适用期,有时也不会出现明显的粘度变化,这主要是因为在分散相中发生的部分化学反应并不足以影响到连续相的流动性。因此我们不能通过粘度变化来判断双组分水性聚氨酯的混合适用期,而需要通过测定一些性能来进行判定,比如光泽值、雾影值及耐溶剂性等等。图4展示了双组份水性聚氨酯的混合过程。

经过混合的涂料通过喷涂及滚涂等不同方法进行涂敷后,即开始了成膜过程。第一步是物理干燥,主要是水的挥发和分散相的凝胶(如图5,图6)。

此时随着水分的挥发,多元醇分散体小液滴及聚异氰酸酯小液滴之间的距离也越来越接近,当它们之间的距离接近到一定程度时,在毛细管力作用下破壁并相互融合,此时第二步化学干燥过程开始了(图7)。

经过化学交联反应而形成的漆膜具有与传统的溶剂型聚氨酯涂料相媲美的性能:比如优异的耐化学品性、抗划伤性、耐磨性及耐候性,而其挥发性有机化合物含量则大大的降低。

用于双组份水性聚氨酯的亲水性聚异氰酸酯固化剂

为实现出色的外观和优异的性能,聚异氰酸酯固化剂需要在多相体系中充分的分散。传统的疏水性聚异氰酸酯需要使用特定设备进行高剪切分散,并不适合建筑涂料现场施工的要求,亲水性聚异氰酸酯则使手工混合成为可能。图8展示了疏水性和亲水性聚异氰酸采用手工混合时在水中的分散状态,如果出现混合不充分时,漆膜的性能将受到明显的影响。

为实现固化剂的亲水性,科思创没有采用使用外添加乳化剂的方法来制备亲水性聚异氰酸酯,而是使用内乳化的方法,即亲水性基团直接和聚异氰酸酯化学结合,从而整个分子形成乳化剂结构,这种方法避免了游离的外添加乳化剂可能带来的耐水性下降等问题。图9对两种聚异氰酸酯亲水化改性做了比较。

最简单的固化剂的亲水化改性可以由异氰酸酯与羟基聚醚化学交联来实现,由醚链来起到非离子亲水改性,但这种改性通常会降低聚异氰酸酯的官能度。图10就是典型的聚醚改性亲水性聚异氰酸酯。

由于官能度的降低通常会造成漆膜性能的下降,为提高官能度,可对氨酯键上的NH进行进一步脲基甲酸酯化,接枝上一个新的HDI三聚体,这样改性后的亲水性聚异氰酸酯的官能度就提高了。图11所示。

最新的研究成果是采用氨基磺酸盐对聚异氰酸酯进行亲水改性(如图12),这有助于进一步提升漆膜的干燥速度、硬度和耐化学品性。此外,这种固化剂相比于聚醚改性的固化剂具有更好的抗涂鸦和耐清洁剂的性能,从而更适合用于有易清洁要求的高性能涂料。

粘度也是影响可分散性的因素之一,低粘度的聚异氰酸酯更容易被手工分散均匀。表1列出了常见的亲水性聚异氰酸酯,其中AS3是建筑漆的优选方案,可以在不经过溶剂稀释的情况下经手工搅拌达到很好的混合效果。

多元醇分散体的选择

羟基丙烯酸分散体是双组份水性聚氨酯体系中常用的树脂,通常有初级分散体(乳液型聚合物)和二级分散体两类。初级分散体采用乳液聚合法制备,通常使用外乳化剂来稳定乳液粒子;二级分散体则是在溶剂中进行均相聚合并在中和后进行乳化分散,聚合物分子链上的羧酸基团起到内乳化剂的作用。

初级分散体往往具有较高的分子量且不含有机助溶剂,因此,它们是快干型涂料的理想选择,但不适用于高光体系。二级分散体因为生产工艺的原因往往含有1-8%的助溶剂,因而适合高光体系使用,但干燥速度相对较慢。

单一使用或组合使用不同类型的羟基丙烯酸分散体可以实现不同的外观和性能。典型的哑光体系是基于A57或A46,当混拼了B46或B95后其综合性能可进一步提高,并且通过不同的混合比例来获得不同的性能。B46或B95常用于高光体系。有时我们还需要高柔韧性的涂层方案,比如用于运动场地坪的涂料,此时可以通过混拼羟基聚氨酯分散体来实现。

NCO/OH当量比

由于NCO与水及其它活性基团之间的副反应,双组份水性聚氨酯中NCO/OH的当量不会选择1:1,而会选择NCO过量,这与传统的溶剂型双组份聚氨酯有明显的不同,通常为了确保所有的羟基反应完全,NCO/OH的当量比选择在1.5~3.0之间。更高的NCO/OH当量比会得到更优的漆膜最终性能,但由于未及时反应的聚异氰酸酯在漆膜中扮演着增塑剂的作用,涂料的干燥速度和早期硬度建立会较慢,更多的聚异氰酸酯固化剂用量也意味着更高的成本。综合考虑性价比因素后,NCO/OH当量比选择在1.5~2.0之间是比较合适的。

双组份水性聚氨酯涂料的性能

刚柔相济

固化后的聚氨酯漆膜中含大量的氨酯键和脲键,它们会在高分子链段间形成氢键。在外力作用下氢键会断开并与其它成键基团重新键合,这正是聚氨酯漆膜刚柔相济的原因所在,这也是双组份水性聚氨酯漆膜具有优异耐磨性和抗划伤性的重要原因。尤其是对于地坪漆等应用,抗划伤性是衡量面漆品质的重要指标。然而长期以来,抗划伤性的测试方法和标准没有在地坪业内得到共识,很多时候仅仅通过指甲刻划来感知,这显然不具备重现性和标准性。一种可行的方法参考GB/T/ISO进行测试(方法1),即用指定的测试探头以30-40mm/秒的速度,在不同的加载下划过样板(运行距离65mm),加载重量通常在~g,通过记录漆膜划破时的加载重量来判别漆膜抗划伤性的好坏。该方法以漆膜“划破”来判别抗划伤性是否符合实际情况,目前在业内还有一定异议。另一种测试抗划伤性的方法(方法2)是选用标准的号柔性砂纸,在不同的加载下往复划擦样板,目前常使用克和g两种加载,分别往复划擦20次及10次,然后通过测定漆膜的光泽变化来判别抗划伤性。该方法与实际中的抗划伤要求比较接近,但目前还需要进一步规范测试的砂纸、流程及设备。基于上述两种方法进行测试,优选的双组份水性聚氨酯具有极佳的抗划伤性,一部分测试数据如表3所示。

易清洁性

地坪和墙面会经常接触到不同的污染物,能实现轻易彻底的清理干净这些污染物是市场所期望的性能。评估易清洁性首先要对污染源进行筛选。在测试中我们选择了日常生活工作中时常会遇到的饮料、调味品、白板笔、儿童水彩笔及蜡笔,最苛刻条件下,还会测试永久性记号笔。双组份水性聚氨酯具有优异的易清洁性,可以用不同的清洁方法清除掉各类污染物,即使已经有了数日的污染。表4列出了抗沾污测试结果。

耐沾污性

外墙上经常可以发现雨后残留的黑色污染痕,这是由于雨水将污染物带到墙面后,夏日的高温使得漆膜软化,将污染物牢牢抓在漆膜表面,不易被清除,从而影响美观。双组份水性聚氨酯漆膜通过化学交联而形成,具有较高的玻璃化转变温度,因而在夏日阳光的高温下不会软化,从而避免污染物与漆膜的牢固附着。而具有一定亲水性的漆膜也会使雨水能够均匀浸润到整个漆面,并均匀冲刷附在其表面的灰尘等污染物,起到清洁表面的作用。基于这两方面因素,双组份水性聚氨酯涂料的耐沾污性能优异。

防霉/抗藻性能

对于在如浴室、食品加工厂等场所应用的涂料,其防霉性能经常会被提及,此时会通过在涂料配方中添加防霉剂和抗藻剂来强化这方面的性能。表5显示了如下实验数据:将防霉剂和抗藻剂分别加入到单组份乳胶漆和双组份水性聚氨酯中,用水冲淋漆膜2天、10天和20天后,分别测试漆膜中防霉剂和抗藻剂的残留量。

实验结果显示,双组份水性聚氨酯的热固性漆膜可以在水冲淋后保留更多的防霉剂和抗藻剂,这也就意味着漆膜更耐用。

抗热轮胎痕

对于停车场地坪漆,非常的



转载请注明地址:http://www.ganqif.com/gqcc/6851.html
  • 上一篇文章:
  • 下一篇文章:
  • 热点文章

    • 没有热点文章

    推荐文章

    • 没有推荐文章